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Abstract: A theoretical analysis is presented for miniaturised filters with an extended stopband and extended common-mode
(CM) rejection, using loaded closed-loop resonators. A numerical method is presented to solve the equations extracted from the
ideal transmission line model. Selection of critical resonator parameters to minimise filter area while simultaneously maximising
the differential-mode (DM) stopband or the CM noise suppression is explored. The trade-off between size, stopband and CM
rejection is presented and used to design three filters at 1 GHz, which are designed to verify the proposed concept. First, a
differential second-order filter with an extended DM stopband (S21d < − 20 dB) up to 6.8 f c and extended CM noise suppression
(S21c < − 20 dB) up to 6.42 f c is realised to show the parameter trade-offs. Then optimal resonators are used to develop a
compact singled-ended filter (0.011λg

2) with an extended stopband (S21 < − 30 dB) up to 8.2 f c and the smallest size. Lastly, a
second order filter with an optimal extended CM rejection (S21c < − 20 dB) up to 6.64 f c is presented. Measured results are
presented. All three filters stand out compared to other works by exhibiting the smallest footprint relative to the operating
frequency.

1 Introduction
Balanced filters offer important benefits for communications
systems such as reduced noise sensitivity, high common-mode
(CM) attenuation and reduced levels of radiation [1, 2]. As with all
filters, design parameters for balanced filters include not only
bandwidth, stopband rejection, insertion loss and return loss but
also CM rejection. Many of these metrics can be directly improved
through the choice of the resonator. A quarter wavelength resonator
can be used to extend the stopband of a passband filter, due to the
lowest spurious frequency being three times the resonant
frequency. Compared to a half-wave resonator, where the lowest
spurious frequency is only twice the resonant frequency [3].
Another common method to extend a filter's stopband is through
the use of stepped impedance resonators (SIR) or closed-loop
resonators. Here the spurious frequency position can be controlled
through the resonators impedance and length ratios of the
connected transmission lines [4, 5]. The inclusion of transmission
zeros where the spurious frequency occurs is another common
method for stopband extension [6–10].

CM noise suppression is a key metric in differential filter
design. The CM response of a balanced bandpass filter should
appear as a bandpass filter, while the CM passband frequency must
be separate from the differential-mode (DM) passband. The CM
resonant frequency can be partially controlled to get the best
performance, depending on the type of resonator used. Under CM
operation, a quarter wavelength resonator is transformed into a
half-wave resonator, due to a virtual open circuit appearing on the
differential resonator's line of symmetry. Thus, the CM resonant
frequency will always be higher than the DM resonant frequency.
Both SIR [4] and closed-loop resonators [11] have proven to be
good options for common-noise suppression, without the need for
an additional stopband structure [12]. In [13], CM parallel
resonances are used to improve the CM response of the filter. A
combination of SIR resonators and interdigital capacitors is used in
[12] to get improved DM and CM responses.

While minimising the physical size of a filter has always been
an important goal in their design, size reduction is paramount in
differential filters, particularly at long wavelengths. For a compact
filter design the main task, of course, is to miniaturise its

constituent resonators. Several techniques exist to miniaturise a
resonator. In [5], for instance, a shorted stub is used to reduce the
size of a closed-loop resonator by 93.7%. An inter-digital capacitor
is implemented in [14] to reduce the size of a coupled-line filter.
Another option is shown in [15], where a multi-mode resonator is
used to reduce the number of resonators. Interdigital capacitors are
also used to decrease the size as is presented in [14]. In [16], folded
SIRs are used to get a compact size filter in comparison with a
conventional SIR based filter. In [6] a single-ended SIR filter is
reported having a stop-band is 12 times higher than the central
frequency ( f s = 12 f c) using substrate integrated coaxial line
technology and relies on 3 distinct resonators.

In this paper, theoretical analysis and design method are
presented for closed-loop resonators with a shorted stub that
minimises resonator size and yields either optimal CM noise
suppression or extended DM stopband. A transmission line model
for a closed-loop resonator and shorted stub is used to obtain the
fundamental resonant equation under DM and CM operations. The
resulting equations are numerically solved to find the resonance
conditions. Using the equations, the resonator can be designed for
the minimal area, best-case extended DM stopband and best-case
CM noise suppression. Practical constraints are accounted for in
the analysis to check the feasibility of the proposed resonators. To
validate the design method, two differential filters and a single-
ended filter are synthesised, fabricated and measured. The
differential filters exhibit very wide DM and CM stopbands that
compare well relative to published works and, notably, they occupy
a record-low area relative to their operating wavelength as a result
of the resonator geometry optimisation.

2 Closed-loop resonator using open and short-
circuited stubs
A filter's design parameters are usually selected to give either a
compact size, an improved CM noise suppression or an extended
DM stopband. The standard process focuses on designing
resonators with one of these parameters in mind. The main
question to answer is how to choose the optimal design parameters
to receive either an extended DM stopband, extended CM noise
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suppression while maintaining a compact-sized resonator. To keep
the balance between these three parameters an accurate design
process is required. The previous methods mentioned above only
focus on how to improve a filters performance by taking into
account practical considerations and intrinsic advantages of the
resonator, but not how to originally design the optimal resonator
for the required performance.

2.1 Analytic framework

The physical size of a closed-loop resonator can be reduced and its
performance improved by using short-circuited stubs [17] or open-
circuited stubs [18]. Fig. 1 shows different shapes of a closed-loop
resonator with an attached stub. The closed-loop is a transmission
line with characteristic impedance Z1 and electrical length θL, while
the stub is a transmission line with characteristic impedance Z2 and
electrical length θ2, ending in a short or open circuit. An arbitrary
shape can be implemented for the resonator as the loop is closed
and has a uniform impedance.

Fig. 2a shows the model of the closed-loop resonator with a
shorted stub. This structure is the DM equivalent circuit for a
differential resonator. Fig. 2b shows the equivalent model of a
closed-loop resonator with an open stub, which is also the CM
equivalent circuit of a differential resonator. Here, the electrical
length of the closed-loop is θL = 2θ1, with the same impedance Z1.

As the DM and CM equivalent circuits have the same model as
the single-ended resonators, it is possible to use the same design
analysis for differential and single-ended resonators. Thus, first a

single-ended resonator can be designed with the desired response.
Then a differential resonator can be obtained by adding a mirrored
copy of the single-ended resonator along the axis of symmetry as
shown in Fig. 3. 

The resonance condition of the equivalent differential model
seen in Fig. 2a, is obtained when the denominator of the equivalent
impedance Zind is zero. The input impedance of the resonator is
given by (1)

Zind = 1 + ZLY22

ZL(Y11Y22 − Y12Y21) + Y22
, (1)

where

Y11 = Y22 = − 2j
Z1

cot θ1, (2)

Y12 = Y21 = 2j
Z1

csc θ1, (3)

and

ZL = jZ2tan θ2 . (4)

Thus, the resonance condition is given by (5), where Rz = Z1/Z2
is the impedance ratio of and N = θ2/θ1 is the length ratio of the
loop and stub respectively.

tan θ1tan(Nθ1) = Rz
2 , (5)

The resonance condition for the CM equivalent seen in Fig. 2b
is similarily obtained by first calculating the input impedance Zinc.
Here the load impedance ZL is given by (6)

ZL = − jZ2cot θ2, (6)

and the resonance condition is given by (7).

tan θ1cot(Nθ1) = Rz
2 . (7)

2.2 Discussion

Equations (5) and (7) require a numerical solution. The control
parameters, Rz and N, were previously introduced and the
properties of the closed-loop resonator can be drastically modified
by choosing the appropriate values for these parameters. The
physical length of the lines can be calculated once a value for θ1 is
found from (5) at the desired centre frequency.

A flowchart of the design procedure is shown in Fig. 4. Here,
the first step is to define the values of the control parameters Rz and
N. Then an angles array is defined (θ1), sweeping the electrical
length of the closed loop resonator from zero to its maximum, π /2.
Using (5) and (7) we define two equations: x = tan(θ1)tan(Nθ1) and
v = Rz/2, which represent the left- and right-hand side of the
resonance equation given in (5). Two values are obtained when
solving x = v, representing the resonant ( f o) and first spurious
frequency ( f s), which provides information on the stopband
extension. Then this electrical length is used in (7) to yield the CM
resonant frequency ( f oc).

Once the analysis method is automated it is possible to make a
sweep of the control parameters to check the effects of its variation
on the DM and CM responses of the resonator. For clarity, the
centre frequency is called f o, the spurious frequency is called f s
and the CM resonant frequency is f oc henceforth.

Fig. 5 shows the variation of the spurious frequency with
respect to the control parameters Rz and N. Here f s can be moved
to higher frequencies by choosing small values for Rz or by
choosing a larger value for N. In practical cases, it is difficult to

Fig. 1  Microstrip closed-loop resonators with shorted or opened sutbs
 

Fig. 2  Closed-loop resonator with a shorted/opened stub model
(a) DM equivalent, (b) CM equivalent

 

Fig. 3  Microstrip closed-loop differential resonators
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fabricate resonators with a larger Rz, due to the implementation of
the high impedance lines.

Fig. 6 shows the variation of the CM resonant frequency with
respect to the control parameters. Unlike the first case, the CM
resonant frequency cannot be improved for values of N > 0.5.
Thus, the best-case CM response will be always limited to the case
where the length of the high impedance line is half the length of the
closed-loop line (θ2 = θ1).

Values of Rz < 0.2 are not considered, as resonators with these
impedance ratios are not easily realised in practice. Additionally,
values of Rz > 1 are not considered because in that range the
resonator starts to behave like a λ/4 uniform impedance resonator
[19] as shown in Fig. 7 which depicts what occurs when Rz = 2, for
example. Similarly, values of N > 1 are not considered because as
the length of the high-impedance line increases, it dominates the
main resonator, leading to a standard λ/4 resonator.

Fig. 8 shows the variation of the normalised length of the
resonator with respect to the control parameters. The normalised
length is calculated by adding the size of both lines, then this result
is divided by the guided wavelength, always equalling 2π. It is
clear that the smallest resonator will be the one with the smallest
value of Rz and the highest value of N, which also is the condition
for the best spurious frequency case.

Using Figs. 5 and 6, resonators with the optimal CM response
and the spurious response can be obtained. Based on the plots, the
best-case spurious frequency is when Rz = 0.2 and N = 1 giving
f s/ f o = 9.2 and f oc/ f o = 5.3. The best-case for the CM resonant
frequency occurs when Rz = 0.2 and N = 0.5, giving f oc/ f o = 6.3
and f s/ f o = 7.1. The ideal responses of the designed resonators are
shown in Fig. 9. It is important to mention that there will be minor
variations in the response due to the numerical approach (finite
decimals) used to solve the resonance equations.

3 Practical considerations
The previous section showed the best closed-loop resonator cases
predicted by the theory. The aspect ratio of a transmission line is
the relation between the width and the length of the line. When the
aspect ratio is high, there can be instances where the best-case
theoretical resonators cannot be physically implemented because
the loop will overlap on itself at the centre. Since the impedance
values for Rz depend on the properties of the substrate and the
operating frequency, the designer should select a substrate with a
higher dielectric constant or smaller height, both of which will
lower the transmission line aspect ratio.

A square closed-loop resonator is implemented in this paper to
simplify the analysis. Fig. 10 shows the physical dimensions of the
closed-loop resonator with a stub. The dimensions of the inner
square for the closed loop resonator is d1 × d1. There are some
practical limitations introduced by the minimum length of d1. The
smallest square that can be fabricated will be constrained by the
resolution of the fabrication process. Equation (8) can be used to
calculate the dimensions of the inner square, d1, which must be
greater than the minimal resolution attainable by the chosen
fabrication method. Equation (9) yields d1 for the case of circular
closed-loop resonators

d1 = L1

4 − W1, (square loop) (8)

d1 = L1

π − W1 . (circular loop) (9)

A second condition is defined by (10)

W2 < L2

4 + W1 (10)

which indicates when the width of the high impedance line is
wider than a single side of the square closed-loop. The effects of
the impedance transition are not modelled by the ideal transmission

Fig. 4  Flowchart of the analysis method used
 

Fig. 5  Variation of the spurious frequency with Rz and N
 

Fig. 6  Variation of the CM resonant frequency with Rz and N
 

Fig. 7  Special case with Rz = 2
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line model and there are additional parasitics associated with the
physical implementation of the resonator arising from transmission
line corners, vias, fabrication tolerance and others. These parasitics
can be captured by adding lumped components to the model but it
turns out that the proposed transmission line model is robust
enough by itself to yield close predictions of filter performance as
will be shown in Section 4.

4 Proposed filters
The proposed method is used to develop three filters with compact
size, extended stopband, and extended CM noise suppression. The
minimum value of d1 was set to 1 mm. All filters were designed
with a centre frequency of f c = 1 GHz.

4.1 Filter A

The first filter is shown in Fig. 11 and it corresponds to a proof of
concept prototype with Rz = 0.25 and N = 0.4 provides a trade-off
between the spurious frequency and the CM resonant frequency. 
The filter is a second-order Butterworth filter with FBW = 12%.
The low-pass prototype values are: g0 = 1, g1 = 1.4142 and
g2 = 1.4142. The required external quality factor is Qe = 9.5 and
the required mutual coupling factor is M12 = 0.1. These frequencies
can be extrapolated from Figs. 5 and 6 obtaining f s ≃ 6.5 f c and
f oc ≃ 6 f c. The physical dimensions, the DM spurious frequency
and the CM resonant frequency are in Table 1. 

4.2 Filter B: designing for minimum size and best-case
spurious response

The proposed design method can certainly be used to design
single-ended filters. Fig. 12 shows a prototype single-ended filter
with the smallest size and the best-case spurious frequency
response. From Figs. 5 and 8 it is clear that the smallest resonator
will be the one with N = 1 and a small value of Rz. The best case is
when Rz = 0.2; however, in order to simplify the filter fabrication a
value of Rz = 0.25 is selected. The filter is a third-order
Butterworth filter with a FBW = 10%. The low-pass prototype
values are: g0 = 1, g1 = 1, g2 = 2 and g3 = 1. The required external
quality factor is Qe = 10 and the required mutual coupling factors
are M12 = M23 = 0.071. In this case, the f s will be between 6 f c and
9 f c. Table 2 shows a summary of the resonator properties. 

4.3 Filter C: designing for best-case CM noise suppression

Fig.13 shows the prototype filter with the most extended CM noise
suppression band. The design parameters can be extracted from
Fig. 6, in this case N must be 1 and a small value of Rz is desired. 
The filter is a third-order Butterworth filter with a FBW = 12%.
The low-pass prototype values are: g0 = 1, g1 = 1.4142 and
g2 = 1.4142. The required external quality factor is Qe = 9.5 and
the required mutual coupling factor is M12 = 0.1. An impedance
ratio of Rz = 0.3 is selected, which indicates that f oc will be larger
than 4.5 f o. Table 3 shows a summary of the resonator properties. 

5 Measured results
The fabricated filters are shown in Fig. 14. These were fabricated
on a Rogers 4003C substrate (ϵr = 3.55 and h = 0.81 mm), with a
0.5-oz copper cladding using an LPKF ProtoMat circuit plotter.
The balanced filters were measured using a four-port VNA. The
connector used in all the ports was a solderless amphenol
SF1521-60107 port.

The fractional bandwidth (FBW) for all cases is similar to the
target values of 10–12%. Filter B (responses in Fig. 15) exhibits a
higher variation of the FBW due to the high dependence on the
mutual coupling factor with the length of the high impedance line
due to the quality of the vias and the fact that the impedance of the
high-impedance lines experience a larger variation from fabrication
tolerances because they are narrow. The insertion loss of the filters
at the central frequency is close to the typically reported insertion
loss in microstrip technology [11].

All the filters exhibit an extended stopband. Filters A (DM and
CM responses in Fig. 16) and C were not originally designed to
have an extended DM stopband. While the filter B, has the most
extended DM stopband in microstrip technology without additional
structures reported in the literature with attenuation better than -30 
dB up to 8.2 f c.

There is the possibility to include additional structures to extend
even more the stopband, but it is not considered in this work. It is
possible to make a differential filter based on the single-ended filter
B by using the technique described in Fig. 3 and it is expected that
such a filter would have many of the same characteristics of the
single-ended version.

Fig. 8  Variation of the resonator's size with Rz and N
 

Fig. 9  Closed-loop resonators
(a) Smallest and best-case spurious response, (b) Best-case CM resonant frequency

 

Fig. 10  Closed-loop resonator
 

IET Microw. Antennas Propag., 2020, Vol. 14 Iss. 9, pp. 860-866
© The Institution of Engineering and Technology 2020

863

Authorized licensed use limited to: Queen's University. Downloaded on September 30,2020 at 17:51:46 UTC from IEEE Xplore.  Restrictions apply. 



Filter C (DM and CM responses in Fig. 17) exhibits an
extended CM noise suppression band which is better than –20 dB
up to 6.61 f c. The CM passband attenuation is lower than –20 dB.
Thus, the proposed resonator appears very promising for the design
of high order balanced passband filters with increased CM noise
suppression performance. All of the proposed filters exhibit
compact size without the need for additional methods to decrease
the size.

Table 4 shows a comparison between Filters A and C and
related differential filters. Only microstrip filters have been
included in order to make a fair comparison. Table 5 compares
Filter B with state-of-the-art single-ended loop filters. In both
tables, the filters designed using the proposed methodology occupy
the smallest area. They also exhibit competitive DM and CM
stopbands. The stopband of Filter B is 8.2 f c, which is noticeably
better than [5, 14, 16], whose stopbands are 4 f c, 5.7 f c and 3 f c,
respectively. While the filter in [6] has a wider stopband of 12 f c
that filter uses 3 different resonator topologies, whereas Filter B
uses only 1 type of resonator.

6 Conclusions
A method to design single-ended or balanced filters with extended
DM stopband, extended CM noise suppression with a compact size
has been proposed. This method uses a numerical method to solve
the general resonance condition of a closed-loop resonator with
either a short or open stub based on the ideal transmission lines
model. The resonator's properties were analysed to obtain the best
combination of parameters Rz and N that provides the optimal cases
for the spurious frequency, CM resonant frequency and size. Size
and spurious frequency can be improved by choosing a small value
for the impedance ratio (Rz) and a length ratio (N) equal to 1. The
CM resonant frequency can be improved by choosing a small value
for the impedance ratio and a length ratio equal to 0.5.

The theoretical analysis was used to design three filters to
operate at 1 GHz with compact size, and either an extended DM
stopband and extended CM noise suppression. The size of the
smallest filter was 0.093λg × 0.122λg. The optimal out-band
rejection is better than 30 dB up to 8.2 f c and the optimal CM
rejection was better than 20 dB up to 6.64 f c.

Fig. 11  Proof of concept prototype filter Rz = 0.25 and N = 0.4.
Ga = 1.17 mm, L f a = 3.07mm

 
Table 1 Dimensions and resonant frequencies of resonator
A
Parameter Value Model Full-wave sim.
L1a, mm 11.11 n/a n/a
W1a, mm 3.76 n/a n/a
L2a, mm 6.5 n/a n/a
W2a, mm 0.23 n/a n/a
d1a, mm 3.59 n/a n/a
f oa, GHz n/a 0.99 0.9125
f sa, GHz n/a 5.95 6.425
f oca, GHz n/a 5.39 5.275
 

Fig. 12  Smallest and best-case spurious case prototype filter Rz = 0.3 and
N = 1. G1b = 0.485 mm, G2b = 0.365 mm, L f b = 3.684

 

Table 2 Dimensions and resonant frequencies of resonator
B
Parameter Value Model Full-wave sim.
L1b, mm 7.95 n/a n/a
W1b, mm 2.75 n/a n/a
L2b, mm 11.2 n/a n/a
W2b, mm 0.2 n/a n/a
d1b, mm 2.45 n/a n/a
f ob, GHz n/a 0.99 0.984
f sb, GHz n/a 7.42 7.109
 

Fig. 13  Most extended CM noise suppression prototype filter Rz = 0.3 and
N = 0.3. Gc = 1.027 mm, L f c = 3.046 mm

 
Table 3 Dimensions and resonant frequencies of resonator
C
Parameter Value Model Full-wave sim.
L1c, mm 9.9 n/a n/a
W1c, mm 2.6 n/a n/a
L2c, mm 6.94 n/a n/a
W2c, mm 0.25 n/a n/a
L3c, mm 1.44 n/a n/a
d1c, mm 4.7 n/a n/a
f oc, GHz n/a 0.99 0.942
f sc, GHz n/a 5.99 6.37
f occ, GHz n/a 5.04 4.75
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Fig. 14  Fabricated filters
(a) Filter A, (b) Filter B, (c) Filter C

 

Fig. 15  Filter B response
 

Fig. 16  Filter A responses
(a) DM, (b) CM

 

Fig. 17  Filter C responses
(a) DM, (b) CM
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0.0473

[10] 2.39 2.5 2 <2 2.72 f c, <–
33 dB

2.72 f c, <–
20 dB

0.043

[11] 1.02 9.83 4 1.767 5.63 f c, <–
40 dB

3.7 f c, <–40 
dB

0.034

[12] 1.8 55.4 5 <1 5.7 f c, <–30 
dB

3.6 f c, < –
22 dB

0.245

This
–
Filter
A

0.917 13 2 1.5 6.8 f c, <–20 
dB

6.42 f c, <–
20 dB

0.025

This
–
Filter
C

0.98 12.8 2 1.52 6.61 f c, <–
20 dB

6.64 f c, <–
20 dB

0.024

 

Table 5 Comparison table between single-ended Filter B
and related works
Ref. f c,

GHz
FBW Order Insertion

loss at f o,
dB

Stopband up to Size
(λg

2)

[5] 1.95 14.72 3 3.3 4 f c, <–20 dB 0.017
[6] 2.39 3.8 3 3 12 f c, <–40 dB 0.01
[14] 2.45 45 3 1.3 5.7 f c, <–27 dB 0.021
[16] 3.535 15.6 4 1.6 3 f c, <–34 dB 0.042
This –
Filter B

0.99 13 3 2.09 8.2 f c, <–30 dB 0.011
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