Intermodulation Distortion Mitigation in Microwave Amplifiers and Frequency Converters

Carlos Saavedra

Professor of Electrical Engineering Queen's University Kingston, Ontario K7L 3N6

30 January 2017

Outline

- Concepts/Review
- Broadband GaN power amplifier with distortion cancellation
- Stand-alone distortion cancelling cell
- Distortion cancellation techniques for mixers

C. Saavedra, Queen's University

Power series model

Derivative superposition [1,2]

This method to mitigate IMD relies on modeling the FET drain current as a power series:

HFET f_T doublers [3]

C. Saavedra, Queen's University

1-6 GHz, 2-Watt GaN baseline amplifier

C. Saavedra, Queen's University

Distortion-cancelling GaN amplifier

recall the approximation,

$$i_{ds} = \sum_{n=1}^{N} g_{mn} v_{gs}^{n} \qquad \qquad g_{mn} = \frac{\partial^{n} I_{DS}}{n! \partial V_{GS}^{n}}$$

Characteristic	This work	[28]	[29]	[30]	[31]	[32]
GaN Technology Circuit Area (mm ²)	0.8 μm 1.03	0.2 μm 4.8	N/A N/A	0.25 μm 2.08	0.15 μm 6	0.2 μm 2.89
Supply Voltage (V) Bandwidth (GHz) P _{SAT} (dBm) Gain (dB) OP _{1dB} (dBm) OIP3 (dBm)	$\begin{array}{c} 20\\ 1-6\\ 33 \pm 0.8\\ 12.2 \pm 0.2\\ 31.3\\ 50.25\end{array}$	30 DC-20 30 to 36 12 32.5 42.6	$28 \\ 0.35-8 \\ 38.2 \\ 9 \pm 1 \\ 37.1 \\ 49 \\ 7 \\ 7 \\ 49 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ $	40 0.25-3 39.2 20 38.5 51	20 9-19 - 13 27 see note ¹	15 1-4 32 14.5 31 44.3
Efficiency	Max: 37% (η)	10-15% (PAE)	20% (PAE)	see note ²	-	see note ³

A. M. El-Gabaly, D. Stewart and C. E. Saavedra, "2-Watt Broadband GaN Power Amplifier RFIC using the fT Doubling Technique and Digitally-Assisted Distortion Cancellation", *IEEE Transactions on Microwave Theory and Techniques*, vol. 61, no. 1, pp. 525-532, 2013.

Stand-alone Distortion Cancelling Cell

C. Saavedra, Queen's University

General purpose amp: Auxiliary FET: Auxiliary amp: Varactors: Substrate: CSA-880912, Celeritek NE34018, NEC GaAs HFET ABP1200, Wenteq Corp. SMV1405-079LF, Skyworks RO3010, er = 10.2

Wen Li and C. E. Saavedra, "A Stand-Alone Distortion-Cancelling Cell for Microwave Amplifiers", *IEEE Microwave and Wireless Components Letters*, vol. 23, no. 4, pp. 205-207, 2013.

Mixers

Switched Gm mixer [4]

IF output stage

Experimental results

Experimental results

Experimental results

Characteristic	This work	[3]	[8]	[5]
Chip Area (mm ²)	0.2	0.315	0.10	1.21
DC Power (mW)	20	34.5	20	25.5
Gain (dB)	26.5	17.5	11	15
Bandwidth (GHz)	1-10	1-5.5	1	0.5 - 5.8
DSB NF (dB)	4.6 ± 0.6	3.9	15.9	4.2
OIP3	16.5	15.6	17.5	-

A. M. El-Gabaly, H. Li and C. E. Saavedra, "A Decade-Bandwidth Low-Noise Mixer RFIC with a Distortion-Cancelling Output Amplifier", *IEEE Symposium on Radio Frequency Integration*, Taipei, Taiwan, 2016.

Acknowledgments

National Research Council

 Natural Sciences and Engineering Research Council of Canada

CMC Microsystems

References

[1] D. R. Webster and D. G. Haigh, "Low-distortion MMIC power amplifier using a new form of derivative superposition," in *IEEE Trans. Microwave Theory and Techniques*, vol. 49, no. 2, pp. 328-332, Feb 2001.

[2] V. Aparin and L. E. Larson, "Modified derivative superposition method for linearizing FET low-noise amplifiers," in *IEEE Transactions on Microwave Theory and Techniques*, vol. 53, no. 2, pp. 571-581, Feb. 2005.

[3] K. Krishnamurthy, R. Vetury, S. Keller, U. Mishra, M. J. W. Rodwell and S. I. Long, "Broadband GaAs MESFET and GaN HEMT resistive feedback power amplifiers," in *IEEE Journal of Solid-State Circuits*, vol. 35, no. 9, pp. 1285-1292, Sept. 2000.

[4] E. Klumperink, S. Lowsma, G. Wienk, B. Nauta, "A CMOS Switched Transconductro Mixer" *IEEE J. Solid-State Circuits*, v. 39, n. 8, 2004.

[5] A. M. El-Gabaly, D. Stewart and C. E. Saavedra, "2-Watt Broadband GaN Power Amplifier RFIC using the fT Doubling Technique and Digitally-Assisted Distortion Cancellation", *IEEE Transactions on Microwave Theory and Techniques*, vol. 61, no. 1, pp. 525-532, 2013.

[6] Wen Li and C. E. Saavedra, "A Stand-Alone Distortion-Cancelling Cell for Microwave Amplifiers", *IEEE Microwave and Wireless Components Letters*, vol. 23, no. 4, pp. 205-207, 2013.

[7] M. Wang, Shan He, C. E. Saavedra, "+14 dB Improvement in the IIP3 of a CMOS Active Mixer Through Distortion Cancellation", *IEEE MTT-S International Wireless Symposium*, Beijing, China, April 2013.

[8] A. M. El-Gabaly, H. Li and C. E. Saavedra, "A Decade-Bandwidth Low-Noise Mixer RFIC with a Distortion-Cancelling Output Amplifier", *IEEE Symposium on Radio Frequency Integration*, Taipei, Taiwan, 2016.

